РОССИЙСКАЯ АКАДЕМИЯ НАУК
СЕКЦИЯ ПО ПРОБЛЕМАМ НАДЁЖНОСТИ И
БЕЗОПАСНОСТИ БОЛЬШИХ СИСТЕМ
ЭНЕРГЕТИКИ НАУЧНОГО СОВЕТА РАН ПО
СИСТЕМНЫМ ИССЛЕДОВАНИЯМ В ЭНЕРГЕТИКЕ

УТВЕРЖДАЮ
Председатель НП «НТС ЕЭС»
д.т.н., профессор

Н. Д. Рогалёв

ПРОТОКОЛ
Совместного заседания Научно-технической комиссии НП «НТС ЕЭС»
и Секции по проблемам надежности и безопасности больших систем
энергетики Научного совета РАН по системным исследованиям в энергетике
на тему:
«Комплекс мероприятий, разработанный в рамках проекта
модернизации газотурбинного двигателя ГТД-110»

г. Москва № 1/20 21 июля 2020 г.

Заседание проведено в режиме видеоконференции.
В видеоконференции приняли участие: АО «Татэнерго», АО «Институт
Гидропроект», НИУ «МЭИ», ЗАО «Интеравтоматика», АО «СО ЕЭС», ПАО
«ОДК-Сатурн», ИСЭМ РАН, Группа компаний «ИнЭнерджи», ОАО «НПО
Газотурбинные технологии», ООО «Газпром энергохолдинг», ОАО «ВТИ»,
АО «Институт «Теплоэлектропроект», Отделение энергетики, машиностроения, механики и процессов управления РАН, Совет РАН по
проблемам развития энергетики, Научный совет РАН по комплексной проблеме
«Теплофизика и теплоэнергетика», ПАО «РусГидро», СКБ ГТУ, АО
«Техническая инспекция ЕЭС».

Заседание открыт президент НП «НТС ЕЭС», ректор НИУ «МЭИ»,
d.т.н., профессор Н. Д. Рогалёв.
В своём вступительном слове Н.Д. Рогалёв отметил важность создания газовых турбин ГТЭ-110М для обеспечения модернизации электростанций и развития новых мощностей.

Со вступительным словом выступил д.т.н. А. Я. Копсов — президент компании ООО «К-Энерго». Ниже приведен текст вступительного слова.

Уважаемые коллеги! На сегодняшнее расширенное заседание, кроме членов Научно-технического совета НП «НТС ЭЭС» и Секции по проблемам надёжности и безопасности больших систем энергетики Научного совета РАН по системным исследованиям в энергетике приглашены представители энергетических и энергомашиностроительных компаний, РАН, Минэнерго РФ, научно-исследовательских и образовательных институтов и организаций энергетического профиля.

Сегодня мы рассматриваем важный вопрос — модернизацию газотурбинных двигателей ГТД-110, выпускаемых ПАО «ОДК-Сатурн» и установленных на Ивановской ПГУ АО «Интер РАО — Электрогенерация» и на Рязанской ГРЭС-24 ООО «Газпром энергохолдинг».

В процессе эксплуатации на этих электростанциях, на газотурбинном оборудовании выявилось значительное количество недостатков и узких мест, которые отрицательно сказывались на работе ПГУ.

По инициативе ПАО «Интер РАО», УК «РОСНАНО» и ПАО «ОДК-Сатурн» была осуществлена глубокая модернизация двигателя, и сегодня на совместном заседании Научно-технического совета НП «НТС ЭЭС» и Секции по проблемам надёжности и безопасности больших систем энергетики Научного совета РАН будут рассмотрены результаты этой работы.

К реализации проекта были привлечены, кроме названных выше компаний, предприятия и институты, специализирующиеся в области газотурбостроения, такие как ОАО «ВТИ», НПО «ЦНИИТМАШ», ОАО «НПО ЦКТИ», ЦИАМ им. П.И. Баранова, ЗАО «Интеравтоматика» и другие научные и специализированные организации.

Одновременно хотел бы подчеркнуть значительный вклад в проект модернизации ГТД-110 специалистов по газовым турбинам: В.В. Романова, А.Н. Климова, В.В. Бушмачанова, Ю.Н. Шмотина, А.С. Иванова, М.Р. Гасуль, Г.Г. Ольховского, В.А. Бilenко, В.Е. Михайлова, А.Д. Трухин, С.В. Куликова и других российских учёных, энергетиков и энергомашиностроителей.

В настоящее время модернизированный двигатель ГТД-110M российского производства прошёл все регламентные испытания и успешно работает в составе второго энергоблока Ивановских ПГУ. Наработка на сегодняшний день составляет более 5 тысяч эквивалентных часов.

Надеюсь, что сегодняшнее обсуждение пройдет традиционно в конструктивном виде и будет способствовать ускорению внедрения отечественного двигателя ГТД-110М в серийное производство.

С докладом «О модернизации газотурбинного двигателя ГТД-110М» выступил А. Н. Климов — главный конструктор ООО «ИЦ «Газотурбинные технологии» (доклад подготовлен совместно с В. В. Романовым —
техническим директором ООО «ИЦ «Газотурбинные технологии» и С. М. Скирта — главным специалистом ООО «ИЦ «Газотурбинные технологии».

В докладе отмечено, что направления по развитию конструкции, обеспечению надёжности и повышению эксплуатационных показателей ГТД-110 были определены по результатам работы экспертной комиссии, которая была организована по инициативе ПАО «Интер РАО», ОАО «РОСНАНО», ОАО «УК «ОДК».

Для реализации проекта ГТД-110М группой компаний был создан инжиниринговый центр ООО «ИЦ «Газотурбинные технологии», задачей которого была модернизация двигателя ГТД-110 в целях повышения надёжности его работы и увеличения паркового ресурса, а также доведения технических характеристик до уровня зарубежных аналогов газотурбинных двигателей в данном классе мощности.

В ходе выполнения проекта разработан ряд технологических и конструктивных мероприятий, позволяющих устранить ранее выявленные проблемы и обеспечить требуемые показатели надёжности. Все модернизированные узлы, аппараты и детали прошли испытания и проверку эффективности на стендах ПАО «ОДК-Сатурн», ОАО «НПО ЦКТИ», ОАО «ВТИ» и в составе опытного двигателя ГТД-110 заводской № 2, а затем внедрены на серийный двигатель ГТД-110 заводской № 6, находящийся в опытно-промышленной эксплуатации в ячейке второго энергоблока Ивановских ПГУ.

Наиболее важными с точки зрения обеспечения ресурса являются мероприятия по рабочей лопатке первой ступени турбины и штатной камере сгорания. Конструктивные и технологические мероприятия разрабатывались с учётом возможности параллельной проверки и обеспечения опережающей наработки на серийных двигателях в ячейках энергоблоков Ивановских ПГУ.

Кроме мероприятий по рабочей лопатке первой ступени турбины, проведена оптимизация теплового состояния сопловых аппаратов турбины, изменено количество сопловых аппаратов первой и второй ступеней для снижения динамического воздействия на рабочие лопатки, разработаны составы и технология нанесения термобарьерных и износостойких наноструктурированных покрытий, выполнена доработка трубопроводов обвязки воздухоохладителей.

Целый ряд работ проведён по моделированию, верификации и оптимизации вибрационного состояния системы роторов. На основании
расчётно-исследовательских и опытных работ разработана конструкция и выпущена документация на модернизированные узлы.

Значимой частью проекта была разработка малоэмиссионной камеры сгорания (МЭКС) на уровень вредных выбросов NOx 25 ppm в диапазоне 50 – 100 % номинальной мощности турбины. По результатам проекта проведены испытания при полных и частичных нагрузках, выпущена конструкторская документация и изготовлен комплект МЭКС для подтверждения заданных характеристик в составе двигателя ГТД-110М. Для проведения испытаний в составе двигателя подготовлены обновленные алгоритмы САУ и дополнительные системы розжига, контроля пульсаций и эмиссии.

Помимо газовой турбины проведены мероприятия по улучшению эксплуатационных показателей систем ГТЭ-110. Усовершенствованы тепло- и звукоизоляция, снижены гидравлические потери во входном тракте ГТД. Разработаны и внедрены мероприятия по устранению вибрации выхлопного газохода.

Отдельным этапом реализации проекта являются испытания основных деталей и узлов на восстановленном и модернизированном опытном двигателе ГТД-110М заводской № 2.

Выполнено пять этапов испытаний, в ходе которых проведены термо- и тензометрирование рабочих лопаток и дисков 1 – 4 ступеней турбины, термометрирование деталей статора турбины и деталей камеры сгорания.

Также в рамках проекта модернизирован двигатель ГТД-110 заводской № 6 в облик ГТД-110М, проведены успешные длительные испытания двигателя на испытательном стенде Ивановских ПГУ по утверждённой программе.

По результатам длительных испытаний и оценки технического состояния при эндоскопическом осмотре основных деталей и узлов с частичной разборкой, двигатель допущен к опытно-промышленной эксплуатации в ячейке второго энергоблока Ивановских ПГУ по диспетчерскому графику.

В настоящее время двигатель находится в режиме подконтрольной опытно-промышлённой эксплуатации в условиях конкурентного рынка электрической энергии и мощности. Суммарная текущая наработка двигателя составляет более 5 100 эквивалентных часов.

Таким образом, в результате выполнения проекта создан первый отечественный газотурбинный двигатель большой мощности с характеристиками, не уступающими зарубежным аналогам.

С докладом «Развитие проекта ГТД-110М» выступил В. В. Бушманов — и. о. заместителя генерального конструктора — главного конструктора по ГТД-110.

Также при выполнении работ создана 3D динамическая модель двигателя на раме для оценки критических частот вращения системы роторов с учётом податливости опор и корпусов. Выполнен анализ прочности и ресурса роторов компрессора и турбины по 2D и 3D моделям, разработаны 3D расчётные модели сопряжённого теплообмена рабочего колеса первой ступени турбины и рабочего колеса второй ступени турбины с учётом смежных полостей.

Полученный опыт был использован при разработке расчётной модели сопряжённого теплообмена соплового аппарата первой ступени турбины с учётом смежных полостей. Выполнена оценка теплового состояния с учётом неравномерности температурного поля за камерой сгорания. Расчётные модели были верифицированы по результатам серии испытаний препарированного ГТД-110 № 2.

Выполнены нестационарные расчёты амплитудно-частотных характеристик газового потока в рабочем колесе первой ступени турбины, по результатам которых принято решение об изменении количества сопловых лопаток 1-ой и 2-ой ступеней турбины.

Выполнено моделирование процессов смещения в камере сгорания, выполнен ряд расчётов сопряжённого теплообмена в камере сгорания.

Выполнен комплекс расчётов малоэмиссионной камеры сгорания, разработана конструкторская документация, изготовлены опытные образцы и
выполнена серий испытаний на стендах ОАО «ВТИ» и ФГУП «ЦИАМ им. П. И. Баранова».

Изготовлен комплекс жаровых труб и горелочных устройств для испытаний в составе двигателя. Выполнена доработка топливного оборудования испытательного стенда Ивановских ПГУ.

Необходимо проведение комплекса испытаний ГТД-110М в составе двигателя с последующей постановкой (внедрением) малоэмиссионной камеры сгорания на серийные образцы двигателей данного типа.

По состоянию на 21.07.2020 г. наработка ГТД-110М № 6 с внедрёнными мероприятиями по проекту ГТД-110М в составе испытательного стенда и блока № 2 Ивановских ПГУ составила 5166 эквивалентных часов. Параметры двигателя соответствуют техническим условиям Р10009500ТУ.

Опыт эксплуатации показал необходимость разработки норм повреждаемости для оценки технического состояния лопаточного аппарата компрессора двигателя в условиях эксплуатации с целью принятия решения о продолжении эксплуатации двигателей при выполнении технического обслуживания.

Также отмечено, что до 2021 г. будут завершены работы по импортозамещению комплектующих изделий (теплообменников, сильфонных компенсаторов, каналов измерения пульсаций давления в полости камеры сгорания).

С целью накопления информации и создания системы прогнозирования предотказного состояния разрабатывается система удалённого мониторинга параметров двигателя в эксплуатации.

По результатам реализации проекта создания ГТД-110М следует отметить:

- ГТД-110М производства ПАО «ОДК-Сатурн» соответствует постановлению Правительства РФ от 17.07.2015 г. № 719 «О подтверждении производства промышленной продукции на территории Российской Федерации»;

- с целью развития проекта ГТД-110М, улучшения потребительских свойств двигателя необходимо продолжить работы по внедрению малоэмиссионной камеры сгорания на серийных образцах, а также по созданию норм повреждаемости, импортозамещению и внедрению удалённого мониторинга параметров в эксплуатации.

С экспертным заключением выступил М. С. Золотогоров — главный специалист ОАО «НПО ЦКТИ».
ГТД-110М — единственный отечественная энергетическая ГТУ, которая спроектирована без использования лицензий ведущих в области газотурбинных зарубежных фирм и выпускается в настоящее время отечественным предприятием.

Двигатель представляет собой одновальный агрегат простого термодинамического цикла для непосредственного привода электрического генератора.

Установка ГТД-110М при мощности 115 МВт имеет чрезвычайно малый отгружочный вес около 60 т. Сравнимый показатель в мире среди агрегатов средней и большой мощности отсутствует. Достигнут такой уникальный весовой показатель за счет применения конструктивных решений, свойственных газотурбинным двигателям авиационного и морского назначения.

Состав проекта модернизации, т.е. перечень элементов и узлов, подлежащий модернизации, был определён практическим опытом эксплуатации шести агрегатов ГТД-110, установленных на двух электростанциях: Ивановские ПГУ и Рязанская ГРЭС. Эксплуатация этих агрегатов после проведённого в 2003 г. МВИ была регулярно связана с нештатными ситуациями. Таким образом был выявлен ряд основных недостатков (дефекты рабочих лопаток турбины, камеры сгорания и внешней обвязки).

Причем первостепенной задачей модернизации агрегата являлось обеспечение ресурса наиболее напряжённых деталей турбины (рабочие лопатки и камера сгорания) для достижения межремонтного ресурса не менее 25 000 эквивалентных часов с плановыми периодическими инспекциями и полного назначенного ресурса не менее 100 000 эквивалентных часов.

Выполненные в ходе проекта модернизации работы можно укрупненно разделить на следующие группы:
- устранение дефекта рабочей лопатки 1-ой ступени турбины;
- повышение эксплуатационных показателей двигателя и установки в целом, в том числе снижение тепловыделений в укрытии ГТД, оптимизация шумовых характеристик в машинном зале ПГУ, снижение потерь давления во входном тракте ГТУ, повышение надёжности работы обвязки трубопроводов системы охлаждения;
- оптимизация вибрационного состояния роторной системы ГТД — трансмиссия — генератор и выходного диффузора ГТД;
- устранение дефектов штатной камеры сгорания для обеспечения ресурсных показателей;
- создание малоэмиссионной камеры сгорания.
ОАО «НПО ЦКТИ» принимало непосредственное участие в выполнении первых трёх групп работ и в обсуждении работ по камерной тематике.

Устранение дефектов по рабочей лопатке 1-ой ступени турбины

Одним из наиболее существенных дефектов, отмечавшихся при эксплуатации двигателя ГТД-110, являлся обрыв рабочей лопатки 1-ой ступени турбины по замковому соединению. По результатам исследований фрагментов разрушенных лопаток, проведённых ведущими институтами, в том числе ОАО «НПО ЦКТИ», выявлено, что разрушение носит усталостный характер. Зонаю зарождения трещины является галтель над средним или над верхним зубом (со стороны входной кромки и спинки по диагонали остrego угла).

Расчётами ОАО «НПО ЦКТИ» было впервые показано, что разрушения происходят по 2-ой форме колебаний. Кроме того, в работах ОАО «НПО ЦКТИ» было указано на возможность возникновения резонансных режимов на 40 и 48 гармониках, что соответствует количеству лопаток сопловых аппаратов 1-ой и 2-ой ступеней соответственно и на исключительно малую величину относительного осевого зазора между сопловым аппаратом и рабочей лопаткой 1-ой ступени. Была определена высокая термонапряжённость трактовой полки (со стороны выходной кромки) и неоптимальная схема охлаждения рабочей лопатки.

Кроме того, рядом организаций было указано на возможность снижения работоспособности лопатки из-за:

- особенностей конструкции рабочей лопатки 1-ой ступени турбины, заложенных при проектировании (массивная жёсткая ножка, составляющая до 50% массы лопатки, узкая замковая часть и др.);
- длительного запуска двигателя до режима «холостой ход», что увеличивает время нахождения на резонансных режимах;
- неравномерного распределения напряжений в замковом соединении, что обусловлено значительной разницей в коэффициенте теплового расширения материалов рабочей лопатки и диска.

С учётом рекомендаций ОАО «НПО ЦКТИ» были разработаны конструктивные и технологические мероприятия, направленные на устранение дефекта и обеспечение ресурса рабочей лопатки 1-ой ступени турбины:

- в конструкцию внедрён демпфер;
- оптимизирована схема охлаждения;
- изменено количество лопаток сопловых аппаратов 1-ой и 2-ой ступеней;
- сопловой аппарат 1-ой ступени смещен в сторону камеры сгорания.

Кроме того, были выполнены следующие дополнительные мероприятия:

- изменена конструкция ножки замка;
- увеличена ширина замка;
- изменена конструкция реборды;
- выполнена подрезка выходной кромки рабочей лопатки;
- внедрена разношаговость в замковом соединении;
- выполнена разнонаправленная подрезка выходной кромки соплового аппарата 1-й ступени;
- оптимизирован химический состав сплава ЧС88У-ВИ (в пределах паспорта на сплав), режимы литья и термообработки;
- применено наноструктурированное термобарьерное покрытие.
Все указанные мероприятия внедрены в серийный облик ресурсной рабочей лопатки двигателя ГТД-110М.
Повышение эксплуатационных показателей двигателя и установки в целом
По рекомендациям ОАО «НПО ЦКТИ» и с участием ОАО «НПО ЦКТИ» выполнены следующие мероприятия:
- для снижения потерь давления на входе в двигатель разработаны и внедрены мероприятия по воздуховодам и входной улитке (разделительное ребро), что позволило выровнять поле давлений на входе в двигатель и повысить КПД (абсолютный) установки на 1 %;
- определены основные источники шума и проведены замеры в зонах их размещения. На завершающем этапе работ в конструкцию ГТЭ внедрены разработанные мероприятия и повторно проведены замеры для оценки эффективности. Комплекс разработанных мероприятий позволил снизить уровень шума до требуемых значений;
- улучшены эксплуатационные показатели двигателя в части снижения теплового излучения от двигателя во внутреннем пространстве укрытия, в рамках которого проведено термометрирование корпусов двигателя. Разработана документация, изготовлены теплоизолирующие легкосъемные кожуха, которые подтвердили свою эффективность при проведении испытаний на двигателе;
- проведены исследования возмущений воздушного потока в модели натурного выхлопного тракта и вибрационного состояния опорных конструкций с последующим анализом и разработкой конструктивных мероприятий.
Мероприятия, направленные на увеличение жёсткости опорных конструкций, позволили более чем в два раза снизить уровень вибраций газохода и довести их до нормируемых значений.
Мероприятия по изменению конструкции опорного вена турбины (количество стоек и форма обтекателей), направленные на устранение источника пульсаций, позволили снизить пульсации давления в три раза, а уровня виброскорости по газоходу в 2,5 раза.
Кроме того, ПАО «ОДК-Сатурн» были устранены дефекты внешней обвязки (трещины трубопроводов, обрыв кронштейнов, разрушение сильфонных компенсаторов и т.д.).
Работы по устранению дефектов по штатной (ресурсной) камере сгорания включали в себя большое число конструктивных изменений, внедрённых в натурный двигатель. Эти работы обсуждены и одобрены на заседании НТС № 9 ООО «ИЦ «Газотурбинные технологии».

Заключительными этапами реализации проекта модернизации являются следующие испытания двигателя.

1. Испытания на стенде АО «Стенд» восстановленного и модернизированного двигателя ГТД-110 заводской № 2. Выполнены пять этапов испытаний, в ходе которых проведены термо- и тензометрирование рабочих лопаток и дисков 1—4 ступеней турбины, термометрирование деталей статора турбины и деталей камеры сгорания.

Заключение

По результатам анализа представленных материалов, с учётом выполненных ОАО «НПО ЦКТИ» работ сделаны следующие выводы.

1. Результаты работ по проекту создания газотурбинного двигателя ГТД-110М, представленные для экспертной оценки, свидетельствуют о глубоком понимании авторским коллективом выявленных в ходе опытной эксплуатации проблем.

2. Представленные материалы свидетельствуют о грамотной и полной постановке расчётных, экспериментальных и конструкторско-технологических работ, а показанные результаты свидетельствуют также о глубокой проработке всех внедрённых в серийную конструкцию мероприятий и решений.

3. Комплекс мероприятий, разработанный в ходе проекта и внедрённый в серийный двигатель ГТД-110М, прошёл проверку эффективности и работоспособности в ходе нескольких этапов испытаний, в том числе в условиях опытно-промышленной эксплуатации в ячейке штатного блока Ивановских ПГУ.

4. На основании анализа представленных материалов о положительных результатах длительных испытаний модернизированного агрегата ГТД-110М следует считать проведённую работу по модернизации агрегата эффективной и ведущей к достижению поставленных целей. Необходимо продолжить следующие работы по усовершенствованию агрегата:

- ПАО «ОДК-Сатурн» разработал конструкторскую документацию на оптимизированный диск 3-ей ступени турбины. Этот вариант в основном соответствует результатам расчётов, ранее выданных ОАО «НПО ЦКТИ». Считаем необходимым рекомендовать этот вариант диска для использования во всех вновь изготовляемых агрегатах ГТД-110М;
- продолжить работы по оптимизации систем охлаждения, в частности, корневой и периферийной полок солевой лопатки 1-ой ступени (хотя бы в расчётном плане).

5. В своё время ОАО «НПО ЦКТИ» признал возможным применение при проектировании энергетических установок Норм прочности, разработанных ЦНИИ им. Крылова (одобрено Заключением ОАО «НПО ЦКТИ»). Однако полученный, в том числе при разработке и эксплуатации ГТД-110, опыт показал необходимость разработки стандартов оценки прочности, повреждаемости и надёжности для энергетических установок.

В настоящее время на отечественных ТЭЦ установлено около 60 ГВт энергоустановок с докритическими параметрами пара, из них 8 ГВт — на давлении 9 МПа и температуру 510 — 540 °C. Возраст большей части из них превысит к 2025 г. 55 лет.

Энергетическое оборудование не отвечает современным требованиям по тепловой экономичности, манёвренности, автоматизации, воздействию на окружающую среду, ремонтным затратам. Экономика страны несёт большие потери из-за перерасхода топлива. На таком оборудовании модернизировать энергетику нельзя.

Действующие в нашей стране энергетические рынки не создают стимулов для разработки новых технологий и оборудования. Для рынка модернизации решающим фактором является её минимальная цена. Это всегда означает использование технологически старых, уже давно освоенных конструкций и технологий.

Для модернизации отрасли нужны турбины мощностью 25, 65, 110 и 160 (или 170 МВт), которые находятся в той или иной мере разработки и освоения. России нужно расширить линейку с повышением мощностей газовых турбин и со 100 % локализацией производства в России. Необходимо создать сертифицированное производство турбинных лопаток для ремонта уже имеющихся и оснащения перспективных ГТУ с намерением поставлять лопатки мировым производителям ГТУ.

Важной задачей, которую необходимо решить в составе ДПМ-2, является модернизация ТЭЦ. Именно газовые турбины мощностью 65, 110, 160 (170) МВт могут быть использованы для масштабной модернизации ТЭЦ. Необходимо правительственное решение о техническом перевооружении ТЭЦ с использованием парогазовых установок там, где они работают на природном газе. Важно сформировать заказ со стороны потребителей ГТУ-110М, обеспечивающий производство не менее 10 — 15 машин в год.

Газотурбинной установке ГТЗ-110 не повезло. Вначале она была спроектирована НПО «Машпроект» в г. Николаеве (Украина). Головной образец был изготовлен и испытывался также НПО «Машпроект» на своём
стенде, а все последующие ГТУ выпускались уже в России ОАО «НПО Сатурн» в г. Рыбинске, для которого эта была лицензионная продукция.

Возникавшие трудности рассматривались без участия разработчика и не получали должной технической оценки. Лишь несколько лет назад, после соглашения ПАО «ОДК-Сатурн», ПАО «Интер РАО» и УК «РОСНАНО» были созданы нормальные условия для доводки ГТУ, проведён необходимый объём исследований и разработаны изменения конструкции, устранившие причины неполадок. В настоящее время двигатель, на котором выполнены эти изменения, прошёл длительные испытания.

Важный вопрос, не получивший пока решения, — это установка на двигатель и испытания комплекта маломощных жаровых труб камеры сгорания, полностью изготовленных и отработанных на стенде.

Другой важный вопрос — это организация серийного производства ГТД-110М в количестве, обеспечивающем потребности модернизации ТЭЦ и новое строительство генерации.

В обсуждении докладов приняли участие

Комментарий д.т.н. В. А. Биленко — технического директора ЗАО «Интеравтоматика», председателя секции АСУ ТП НП «НТС ЭЭС».

Весь цикл испытаний двигателей ГТД-110М — как опытного двигателя ГТД-110М, заводской № 2 на испытательном стенде, так и находящегося в опытно-промышленной эксплуатации в ячейке блока ПГУ серийного двигателя ГТД-110М, заводской № 6 — обязательно сопровождался включением в работу всего необходимого объёма технологической автоматики: защиты, блокировки, регуляторов, сигнализации и т.д.

При проведении работ по модернизации газотурбинного двигателя ГТД-110М и доведении его технических характеристик и показателей надёжности работы до уровня, удовлетворяющего требованиям рынка электрической энергии и мощности Российской Федерации, затруднений со стороны автоматики не было, несмотря на длительный срок службы оборудования ПТГ стенда. В процессе работ возникла необходимость внесения изменений в
CAU ГТД, которые были реализованы в CAU TP стенда, а затем перенесены в CAU TP энергоблока № 2.

В соответствии с технологическим заданием ООО «ИЦ «Газотурбинные технологии» и ОАО «ВТИ» ЗАО «Интеравтоматика» разработало и реализовало в CAU стенда алгоритмы управления ГТД-110М с малоэмиссионной камерой сгорания с учётом доработанной схемы распределения топливного газа.

В целях локализации производства ГТД-110М в России целесообразно все дальнейшие образцы газотурбинной техники автоматизировать только на российском оборудовании.

ЗАО «Интеравтоматика» подтверждает возможность автоматизации ГТД на аппаратуре отечественного производства с соблюдением всех требований завода-изготовителя и с учётом имеющегося опыта, накопленного в рамках работ по внедрению на российском рынке ряда ПГУ с газовыми турбинами иностранных производителей.

Комментарий д.т.н., профессора В. Е. Михайлова — генерального директора ОАО «НПО ЦКТИ».

Усовершенствованная конструкция газотурбинных двигателей ГТД-110М является очень хорошей. Целесообразно расширять производство ГТД-110М.

Комментарий д.т.н., профессора В. Г. Грибина — заведующего кафедрой паровых и газовых турбин НИУ «МЭИ».

Необходимо отметить, что проводимые работы имеют важное значение для обеспечения энергобезопасности РФ и развития отечественных газотурбинных технологий для выработки электроэнергии.

В презентациях и заключении эксперта представлены данные по разработке и внедрению комплекса мероприятий по модернизации, которые заслуживают высокой оценки, но недостаточно отражены результаты контроля рабочих параметров, полученные в процессе опытно-промышленной эксплуатации двигателя.

Необходимо провести анализ эффективности работ по снижению аэродинамических потерь в проточной части установки: входной, выходной патрубки, лопаточный аппарат. Указанный анализ необходим как для оценки полученных результатов, так и для возможностей дальнейшего повышения эффективности двигателя.

Целесообразно продолжить опытно-промышленную эксплуатацию модернизированного двигателя ГТД-110. Учитывая большое число пусков в наработке 2 500 и 4 850 эквивалентных часов, наличие незначительных повреждений лопаточного аппарата компрессора и защитного покрытия сопловых лопаток первой ступени следует рассмотреть на Научно-технической совете НП «НТС ЕЭС» техническое состояние двигателя по результатам эксплуатации и дефектации после 6 500 часов работы.

Комментарий А. С. Иванова — начальника отдела продаж энергетических ГТД ПАО «ОДК-Сатурн».
В настоящее время разработан бизнес-план выпуска ГТД-110М. Предприятие ПАО «ОДК-Сатурн» готово выпускать 4 турбины в год.

Комментарий член-корр. РАН, президента ОАО «ВТИ» Г. Г. Ольховского.

Количество таких турбин для модернизации электростанций очень велико. Так, в работе, выполненной в ОАО «ВТИ» в 2015 г. к.т.н. В. В. Нечаевым, установлен перечень конкретных ТЭЦ, на которых может быть применено более 100 таких ГТУ.

Если переводить стоимость отечественных газовых турбин в долл. США не по курсу продажи нефти, а по паритету покупательной способности (что более правильно), то стоимость отечественных турбин будет не выше зарубежных.

С заключительным словом выступил д.т.н. А. Я. Копсов — президент компании ООО «К-Энерго».

Уважаемые коллеги, мне понравилось сегодняшнее обсуждение результатов работы модернизации газотурбинного двигателя ГТД-110М, оно прошло активно несмотря на то, что проходило в режиме видеоконференции.

Было высказано большое количество мнений и конкретных предложений по различным аспектам Проекта. Подавляющее число участников выступило с одобрением проведённой работы и мнениями по ускорению запуска отечественного двигателя ГТД-110М в серийное производство.

Сегодняшняя обстановка показывает необходимость ускоренной организации производства отечественных газовых турбин большой мощности в стране для импортозамещения этого оборудования, и для этого имеются положительные предпосылки.

Давайте вспомним, что после московской аварии в мае 2005 г. оперативно, в течение двух лет, ОАО «Силовые машины» изготовили для московских электростанций 6 газовых турбин ГТЭ-160, три паровые турбины и 9 генераторов.

Сегодня три ПГУ-450 с этим оборудованием успешно эксплуатируются на ТЭЦ-21 и ТЭЦ-27 в Мосэнерго, на которых около 90 % установлено оборудование, изготовленное в России.

К чему я это говорю: сегодня у российских энергомашиностроительных компаний, в частности, у ПАО «ОДК-Сатурн» и ПАО «Силовые машины» имеются все возможности для организации и восстановления производства газовых турбин единичной мощностью линейкой 65, 110 и 180 МВт, на базе которых можно формировать ПГУ в диапазоне мощностей 100 – 600 МВт.

Поэтому я надеюсь, что сегодняшнее решение, основанное на сообщениях и выступлениях его участников, будет способствовать продвижению серийного производства газотурбинного двигателя ГТД-110М.
Совместное заседание отмечает

3. В ходе реализации указанного проекта разработан ряд технологических и конструктивных мероприятий, позволяющих устранить ранее выявленные в процессе эксплуатации оборудования недостатки и дефекты и обеспечить требуемые показатели надёжности и экономичности. Всё модернизированное оборудование проходило испытания на стендах или в составе двигателей ГТД-110М заводской № 2 и заводской № 6.

4. Конструктивные и технологические мероприятия разрабатывались с учётом возможности параллельной проверки и обеспечения опережающей наработки на серийных двигателях в ячейках энергоблоков Ивановских ПГУ. Наиболее важными для решения поставленных задач явились мероприятия по рабочей лопатке первой ступени турбины и штатной камере сгорания.

Проведены также мероприятия по оптимизации теплового состояния сопловых аппаратов турбины, вибрационного состояния системы роторов, разработке составов и технологий нанесения термобарьерных и износостойких наноструктурированных покрытий.

Значимой работой проекта являлась разработка малоэмиссионной камеры сгорания на значение вредных выбросов NOx в 25 ppm в диапазоне 50 – 100 % мощностей от номинала.

По результатам стендовых испытаний и расчётного анализа для доводочных работ и испытаний в составе двигателя выбран вариант МЭКС разработки ОАО «ВТИ». Изготовлен комплект жаровых труб для постановки
на двигатель, подготовлены алгоритмы САУ и дополнительные системы розжига, контроля пульсаций и эмиссии.

В соответствии с техническим заданием ИЦ «ГТТ», ОАО «ВТИ» и ЗАО «Интеравтоматика» разработали и реализовали в САУ стенда алгоритмы управления ГТД-110М с малоземиссионной камерой сгорания с учётом доработанной схемы распределения топливного газа.

5. Эффективность и достаточность разработанных и проведённых мероприятий подтверждены в ходе исследований на стендах ПАО «ОДК-Сатурн», ОАО «НПО ЦКТИ», ОАО «ВТИ» и нескольких этапов работы двигателя на стенде ПАО «Интер РАО» на площадке Ивановских ПГУ.

6. Параллельно с доводкой ГТУ проведены работы по улучшению показателей технологических систем ГТД-110М, в том числе усовершенствована тепло- и звукоизоляция, снижены гидравлические потери во входном тракте ГТУ, реализованы мероприятия по устранению вибраций выхлопного газохода. Выполнены пять этапов испытаний, в ходе которых проведены термо- и тензометрирование рабочих лопаток и дисков 1 – 4 ступеней турбины, термометрирование деталей статора турбины и деталей камеры сгорания.

В рамках проекта был также модернизирован двигатель ГТД-110 заводской № 6, который использован для подконтрольной эксплуатации в ячейке второго блока ПГУ-325. После наработки 2545 эквивалентных часов проведена его инспекция с частичной разборкой двигателя и эндоскопический осмотр всего газовоздушного тракта, выполнена дефектация основных деталей и узлов.

7. Весь цикл испытаний двигателей ГТД-110М как опытного двигателя ГТД-110М заводской № 2 на испытательном стенде, так и находящегося в опытно-промышленной эксплуатации в ячейке блока ПГУ серийного двигателя ГТД-110М заводской № 6, сопровождался включением в работу всего необходимого объёма технологической автоматики: защиты, блокировки, регуляторов, сигнализации и т.д. Важно отметить, что высокий уровень автоматизации технологических процессов был реализован ЗАО «Интеравтоматика» на базе типовых программно-технических средств (ТПТС) цехом российского производства ФГУП «ВНИИА им. Духова» и доведён до типового решения, что является существенным шагом в развитии средств управления газовыми турбинами и открывает широкие возможности применения данного решения не только на ГТД-110М, но и на зарубежных газовых турбинах, а также при модернизации существующих турбин и локализации их производства в России.

8. Положительные результаты испытаний позволили допустить двигатель ГТД-110М заводской № 6 в опытно-промышлennую эксплуатацию в ячейке блока ПГУ № 2 для работы по диспетчерскому графику. В настоящее время этот двигатель с комплексом внедрённых мероприятий успешно эксплуатируется в условиях конкурентного рынка электрической энергии и мощности. На сегодняшний день его суммарная наработка составляет 5166 эквивалентных часов. Таким образом, в результате выполнения проекта
модернизации двигателя ГТД-110М обеспечена его работоспособность с характеристиками, не уступающими зарубежным аналогам.

9. Длительные испытания двигателя ГТД-110М заводской № 6 с внедрённым комплексом мероприятий в условиях испытательного стенда и опытно-промышленной эксплуатации дали положительный результат.

Разработанный комплекс мероприятий по проекту создания ГТД-110М включён в состав перевыпущенной конструкторско-технологической документации, которая готова к серийному производству.

10. Представленные к рассмотрению Научно-технического совета НП «НТС ЕЭС» и Секции по проблемам надёжности и безопасности больших систем энергетики Научного совета РАН по системным исследованиям в энергетике проекту модернизации газотурбинного двигателя ГТД-110М свидетельствуют о большом объёме и высоком техническом уровне выполненных расчётно-аналитических, экспериментально-исследовательских и конструкторско-технологических работ, а также глубокой проработке проведённых мероприятий и решений. Комплексный подход, реализованный в ходе выполнения указанного проекта, позволил модернизировать и успешно испытать первый отечественный газотурбинный двигатель большой мощности.

11. Проект модернизации ГТД-110М, реализованный на площадке Ивановских ПГУ, является инновационным, поскольку он вводит в употребление значительно улучшенный процесс производства электроэнергии.

12. Целесообразно рекомендовать НП «Совет рынка» зарегистрировать для оборудования энергоблока ст. № 2 филиала Ивановские ПГУ АО «Интер РАО – Электрогенерация» признак генерирующего оборудования инновационного вида при работе на оптовом рынке электроэнергии и мощности в связи с наличием в его составе оборудования и решений инновационного вида (газовая турбина ГТД-110М).

13. Требуется разработать нормы повреждаемости для оценки технического состояния двигателя в условиях эксплуатации с целью принятия решения о продолжении его эксплуатации при выполнении технического обслуживания.

14. Необходимо провести испытания малоэмиссионной камеры сгорания в составе двигателя ГТД-110/ГТД-110М.

Совместное заседание решило

2. Считать положительным результат длительных испытаний двигателя ГТД-110 заводской № 6 с внедрённым комплексом мероприятий (облик ГТД-
110М) в условиях испытательного стенда и опытно-промышленной эксплуатации в составе ячейки блока ПГУ-325 суммарной наработкой 5166 эквивалентных часов.

3. Отметить, что разработанный комплекс мероприятий по проекту модернизации ГТД-110М включён в состав перевыпущеной конструкторско-технологической документации на ГТД-110М производства ПАО «ОДК-Сатурн», которая готова к серийному производству и соответствует постановлению Правительства РФ от 17.07.2015 г. № 719 «О подтверждении производства промышленной продукции на территории Российской Федерации».

4. Отметить значительный объём выполненных в ходе проекта расчётно-аналитических работ с применением современных методик и программных комплексов, лабораторных и стендовых испытаний деталей и узлов, значительного числа металлургических и металлографических исследований и соответствие двигателя ГТД-110М заявленным в технических условиях характеристикам, соответствующих требованиям целевых показателей проекта, что подтверждено как в условиях испытательного стенда, так и в условиях ячейки блока ПГУ.

Считать проведённые в рамках инвестиционного соглашения работы и комплекс мероприятий по устранению недостатков и повышению надёжности двигателя ГТД-110 успешными и подтвердившими свою эффективность.

5. Отметить, что весь цикл работ проводился с высоким уровнем автоматизации технологических процессов, реализованным ЗАО «Интеравтоматика» на базе типовых программно-технических средств (ТПТС) российского производства ФГУП «ВНИИА им. Духова». Разработка доведена до типового решения, что является существенным шагом в развитии средств управления газовыми турбинами и открывает возможность применения данного решения не только на ГТД-110М, но и применительно к зарубежным газовым турбинам, например при модернизации существующих турбин и локализации их производства в России.

6. Признать целесообразным проведение комплекса испытаний ГТД-110М с постановкой (внедрением) малоземиссионной камеры сторания. При этом лидерный образец ГТД-110М с апробированной на стенде малоземиссионной камерой сторания по согласованию с заказчиком может быть изготовлен как в рамках нового двигателя, так и при капитальном ремонте одного из действующих двигателей, для сокращения сроков внедрения.

7. Рекомендовать ПАО «ОДК-Сатурн» продолжить работы по импортозамещению комплектующих изделий ГТД-110М, созданию норм повреждаемости и внедрению удалённого мониторинга параметров в эксплуатации двигателя.

8. Признать проект модернизации ГТД-110М, реализованный на площадке Ивановских ПГУ инновационным и считать целесообразным присвоить энергоблоку № 2 статус инновационной площадки для отработки технических решений по доводке тепловой схемы и режимов работы ПГУ-325 с получением соответствующих преференций со стороны НП «Администратор
торговой системы» и НП «Совет рынка» при работе на оптовом рынке электроэнергии и мощности.

9. Рекомендовать НП «Совет рынка» зарегистрировать для оборудования энергоблока ст. № 2 филиала «Ивановские ПГУ» АО «Интер РАО – Электрогенерация» признак генерирующего оборудования инновационного вида при работе на оптовом рынке электроэнергии и мощности, в связи с наличием в его составе оборудования и решений инновационного вида (газовая турбина ГТД-110М).

10. Рекомендовать Минэнерго и Минпромторгу РФ модернизированный двигатель отечественного производства ГТД-110М к широкому применению в энергетике, имея ввиду использование его как в программах технического перевооружения ТЭС, работающих на природном газе, так и при строительстве новых электростанций на территории Российской Федерации.

Первый заместитель Председателя
Научно-технической коллегии
НП «НТС ЕЭС», д.т.н., профессор,
академик АЭН

В.В. Молодюк

Учёный секретарь
Научно-технической коллегии
НП «НТС ЕЭС»,
к.т.н.

Я. III. Исамухамедов

Учёный секретарь Секции по
проблемам надёжности и безопасности
больших систем энергетики Научного
совета РАН по системным
исследованиям в энергетике,
заведующий отделением
АО «Энергетический институт
им. Г.М. Кржижановского»,
д.т.н., академик АЭН

В.А. Баринов